رنگ آمیزی دینامیکی یک گراف و مجموعه تعیین کننده ی آن
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه تفرش - دانشکده ریاضی
- author مرضیه تقیان تودشکی
- adviser دوستعلی مژده
- Number of pages: First 15 pages
- publication year 1390
abstract
هر رنگ آمیزی واقعی یک گراف رنگ آمیزی دینامیکی آن گراف می باشد اگر همسایه های هر رأس از درجه حداقل 2 در آن در حداقل دو کلاس رنگ قرار گیرند. در این رساله به بررسی عدد رنگی دینامیکی یک گراف و مقایسه آن با عدد رنگی واقعی خواهیم پرداخت. همچنین برخی مسائل کلاسیک در رنگ آمیزی واقعی مانند الگوریتم حریص، کران مینیمم درجه گرافهای رنگ بحرانی رأسی و... در رنگ آمیزی دینامیکی بیان خواهد شد. مجموعه و عدد تعیین کننده برای رنگ آمیزی دینامیکی یک گراف را تعریف کرده و این عدد برای برخی گرافهای خاص بدست می آوریم.
similar resources
مجموعه های تعیین کننده در رنگ آمیزی راسی گرافها
گراف دلخواه g دارای یک k- رنگ آمیزی معتبر است . اگر تخصیص k رنگ متفاوت به راسهای g وجود داشته باشد به طوری که هیچ دو راس متصل یک رنگ یکسان نداشته باشند به کوچکترین مقدار k عدد رنگی گراف می گوییم . در گراف دلخواه g به مجموعه ای از راس ها با یک رنگ آمیزی داده شده ، یک مجموعه تعیین کنند رنگ آمیزی راسی g گوییم هر گاه بتوان این رنگ آمیزی را به طور منحصر به فرد به یک k رنگ آمیزی از راس های g توسعه د...
رنگ آمیزی لیستی منصفانه ی گراف ها
فرض کنید مجموعه یال_های e(g) باشد. یک k-رنگ_آمیزی رأسی مجاز از گراف g، یعنی تخصیص k رنگ به رئوس g به گونه_ای که رأس_های مجاور هم رنگ نباشند. یک رنگ_آمیزی لیستی تعمیمی از مفهوم رنگ_آمیزی معمولی است، به این ترتیب که به هر یک از اجزای گراف، مجموعه_ی دلخواه از رنگ_ها نسبت داده می_شود و برای رنگ_آمیزی هر جزء باید از رنگ لیست متناظر آن استفاده شود و یک رنگ_آمیزی مجاز برای گراف به_دست آید. لیست ت...
رنگ آمیزی منصفانه ی گراف ها
فرض کنید g یک گراف متناهی، غیرجهت دار و ساده با مجموعه رئوسv(g) و مجموعه یال هایe(g) باشد. یک -kرنگ آمیزی رأسی از گراف g ، یعنی تخصیص k رنگ به رئوس g به گونه ای که رأس های مجاور هم رنگ نباشند. اگر در گراف g یک - k رنگ آمیزی وجود داشته باشد به طوری که اختلاف اندازه ی کلاس های رنگی، حداکثر یک باشد، آنگاه گراف g را -k رنگ پذیر منصفانه گویند. کوچکترین عدد صحیح k که به ازای آن گرافg ،...
15 صفحه اولرنگ آمیزی گراف فازی
رنگ آمیزی گراف فازی یکی از مهم ترین مسائل بهینه سازی ترکیبیاتی است. بسیاری از مثال های عملی مانند جدول زمانی، خوشه بندی شبکه ها و کنترل نور ترافیک را می توان به عنوان مسأله رنگ آمیزی مدل بندی کرد. مسأله رنگ آمیزی فازی متشکل از تعیین عدد رنگی از یک گراف فازی و تابع رنگ آمیزی مرتبط با آن است. در این پژوهش، ابتدا مفاهیم و مقدمات اولیه فازی بیان می شود، سپس گراف فازی و مکمل آن توضیح داده می...
رنگ آمیزی پویای گراف ها
در این پایانامه سعی می کنیم به ارتباط بین عدد رنگی و عدد رنگی پویای گراف ها در حالت خاص بپردازیم, علاوه بر آن عدد رنگی پویای انتخابی(لیستی) را معرفی کرده و بعضی از نتایج آن را بیان می کنیم.
My Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه تفرش - دانشکده ریاضی
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023